
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Models for
model integration

Daniel S. Katz
Assistant Director for Scientific Software & Applications, NCSA
Research Associate Professor, CS
Research Associate Professor, ECE
Research Associate Professor, iSchool
dskatz@illinois.edu, d.katz@ieee.org, @danielskatz

(slides available at doi: 10.6084/m9.figshare.5146921)

Oxford, UK, June 27, 2017

Multiscale

• The world has multiple scales
• In modeling, a common challenge is determining the

correct scale to capture a phenomenon of interest
• In computer science, a parallel problem is describing a problem

with the right level of abstraction
• Capture the details you care about and ignore those you

don’t
• But multiple phenomena interact, often at different scales
• We often know how to solve a part of the problem with

sufficient accuracy, but when we combine multiple parts
of the problem at various scales, we need to couple the
solution methods too

Questions about each model
• What are the key coordinates?

• Spatial, temporal, other
• What’s a characteristic scale?

• O(cm), O(minute),
O(nucleotide base),
O(temperature)

• How are the scales related?
• Overlapping, separated,

contiguous
• What are the inputs and

outputs?
• Does the model have internal

state? Or side effects?
• Dynamic or steady-state?

A. Marshall-Colon, S. P. Long, D. K. Allen, et al. "Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling
Platform,” Frontiers in Plant Science, v.8, page 786, 2017. doi: 10.3389/fpls.2017.00786

Coupling methods
• Determine the models to run & how they iterate/interact
• Coupling options (ordering, automation, timescale)

• “Manual” coupling (sequential, manual, days)
• Inputs to a code at one scale are influenced by study of the

outputs of a previously run code at another scale
• “Loose” coupling (sequential, automated, minutes)

• Typically performed using workflow tools
• “Tight” coupling (concurrent, automated, seconds)

• Typically performed using framework, maybe in single
memory space

• Boundary between options can be fuzzy
• Choice often depends on how frequently the interactions

are required, and how much work the codes do
independently

A model for model coupling
• Is the coupling topology

cyclic or acyclic, or
does only parts contain
cycles?

• Are there multiple
instances of certain
models, and if so, can
the number be
statically determined?

• Can the number of
synchronization points
be statically
determined?

J. Borgdorff, C. Bona-Casas, M. Mamonski, et al., A Distributed Multiscale Computation of a Tightly Coupled Model Using the
Multiscale Modeling Language, Procedia Computer Science, v. 9, 2012. doi: 10.1016/j.procs.2012.04.064

Interaction with infrastructure
• Single system: laptop, cluster, cloud (single remote cluster)
• Distributed system: clouds
• Which (how many) memory space(s)
• Coordination: framework, script/glue
• Communication:

internal (eg MPI),
files,
messages

• Control:
in/run/out,
in/run/…/run/out,
in/run/out/in/run/
out/in/run/out/…

D. E. Bernholdt, B. A. Allan, R. Armstrong, et al., "A Component Architecture for High-Performance Scientific Computing,"
International Journal of High Performance Computing Applications, v. 20(2), Summer 2006. doi: 10.1177/1094342006064488

More on coupling

Model1 Model2Msg

Model1 File

Tight Loose

Model2File

Implement via MPI,
framework, etc.
(e.g., PDEs in a single
memory space)

Implement via
workflow system

Swift

• A C-like workflow language for programming the interaction of
models (in/run/out)
• External processes that communicate via files
• Functions that communicate via variables
• Sequential or parallel

• A runtime that supports portable workflows – deployable on many
resources (clusters, HPC, clouds)

• Provides natural concurrency at runtime through automatic data flow
analysis and task scheduling

• Data structures and script operations to support scientific computing
• Provenance gathered automatically
• http://swift-lang.org/

Swift enables execution of simulation campaigns
across multiple HPC and cloud resources

Local datamarkApps

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus	systems

Cloud	resources

Petascale	systems

National	infrastructure

Swift model

• Variables are single assignment futures
• Variables that be “used” before they are filled/closed
• Unassigned variables are empty/open

• Variables can represent files
• When a file doesn’t exist, the variable is open
• When a file exists, the variable is closed

• All initial tasks found at runtime
• Additional tasks can be created during run

• Tasks with satisfied dependencies (closed variables) are
run on whatever resources are available

• These create files/variables that allow more tasks to run

Swift concurrency and complexity

Settings

Iteration?

Control

Model

Model

Model

Model

Params

Params

Params

Params

Implicit parallelism and
load balancing

StatsAnalyze

Results

Results

Results

Results

Conditional
selection

Parsl
• Python-based implementation of the Swift concept

• A fully parallel scripting library
• Tasks can be models (in/run/out) or (python) functions

that communicate via files or data objects
• Easy to run: on clusters, clouds and grids
• Sends work to disparate resource providers

• Fast: launches thousands of tasks per second
• Under active development
• http://parsl-project.org

Simple Parsl example
Import Parsl
import parsl
from parsl import *

Create a pool of threads to execute functions
workers = ThreadPoolExecutor(max_workers=4)
Pass workers to the DataFlowKernel, which will execute Apps over them
dfk = DataFlowKernel(workers)

@App('python', dfk)
def pi(total):

function that creates total random points in 1x1 box and returns the
number that fall in a circle inside that box

return (number)

@App('python', dfk)
def avg_three(a,b,c):

return (a+b+c)/3

Simple Parsl example, cont.
a, b, c = pi(10**6), pi(10**6), pi(10**6)
returns immediately, with a, b, c futures

avg_pi = avg_three(a, b, c)
returns immediately, with avg_pi future
once a, b, c are calculated, this will start running

Print the results
print("A: {0:.5f} B: {1:.5f} C: {2:.5f}".format(a.result(), b.result()
, c.result()))
blocks until a, b, c are calculated

print("Average: {0:.5f}".format(avg_pi.result()))
blocks until avg_pi is calculated

Some reading

• D. E. Bernholdt, B. A. Allan, R. Armstrong, et al., "A Component Architecture for
High-Performance Scientific Computing," International Journal of High Performance
Computing Applications, v. 20(2), Summer 2006. doi: 10.1177/1094342006064488

• D. Groen, S. J. Zasada and P. V. Coveney, "Taxonomy of Multiscale Computing
Communities," 2011 IEEE Seventh International Conference on e-Science
Workshops, 2011. doi: 10.1109/eScienceW.2011.11

• J. Borgdorff, C. Bona-Casas, M. Mamonski, et al., A Distributed Multiscale
Computation of a Tightly Coupled Model Using the Multiscale Modeling Language,
Procedia Computer Science, v. 9, 2012. doi: 10.1016/j.procs.2012.04.064

• A. Marshall-Colon, S. P. Long, D. K. Allen, et al. "Crops In Silico: Generating Virtual
Crops Using an Integrative and Multi-scale Modeling Platform,” Frontiers in Plant
Science, v.8, page 786, 2017. doi: 10.3389/fpls.2017.00786

• M. Wilde, N. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster, "Swift: A
language for distributed parallel scripting," Parallel Computing, v.37(9), pp. 633-652,
2011. doi: 10.1016/j.parco.2011.05.005

