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Multiscale

• The world has multiple scales
• In modeling, a common challenge is determining the 

correct scale to capture a phenomenon of interest
• In computer science, a parallel problem is describing a problem 

with the right level of abstraction
• Capture the details you care about and ignore those you 

don’t
• But multiple phenomena interact, often at different scales
• We often know how to solve a part of the problem with 

sufficient accuracy, but when we combine multiple parts 
of the problem at various scales, we need to couple the 
solution methods too



Questions about each model
• What are the key coordinates?

• Spatial, temporal, other
• What’s a characteristic scale?

• O(cm), O(minute), 
O(nucleotide base), 
O(temperature)

• How are the scales related?
• Overlapping, separated, 

contiguous
• What are the inputs and 

outputs?
• Does the model have internal 

state? Or side effects?
• Dynamic or steady-state?

A. Marshall-Colon, S. P. Long, D. K. Allen, et al. "Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling 
Platform,” Frontiers in Plant Science, v.8, page 786, 2017. doi: 10.3389/fpls.2017.00786



Coupling methods
• Determine the models to run & how they iterate/interact
• Coupling options (ordering, automation, timescale)

• “Manual” coupling (sequential, manual, days)
• Inputs to a code at one scale are influenced by study of the 

outputs of a previously run code at another scale
• “Loose” coupling (sequential, automated, minutes)

• Typically performed using workflow tools
• “Tight” coupling (concurrent, automated, seconds)

• Typically performed using framework, maybe in single 
memory space

• Boundary between options can be fuzzy
• Choice often depends on how frequently the interactions 

are required, and how much work the codes do 
independently



A model for model coupling
• Is the coupling topology 

cyclic or acyclic, or 
does only parts contain 
cycles? 

• Are there multiple 
instances of certain 
models, and if so, can 
the number be 
statically determined? 

• Can the number of 
synchronization points 
be statically 
determined? 

J. Borgdorff, C. Bona-Casas, M. Mamonski, et al., A Distributed Multiscale Computation of a Tightly Coupled Model Using the 
Multiscale Modeling Language, Procedia Computer Science, v. 9, 2012. doi: 10.1016/j.procs.2012.04.064



Interaction with infrastructure
• Single system: laptop, cluster, cloud (single remote cluster)
• Distributed system: clouds
• Which (how many) memory space(s)
• Coordination: framework, script/glue
• Communication: 

internal (eg MPI),
files, 
messages

• Control: 
in/run/out, 
in/run/…/run/out,
in/run/out/in/run/
out/in/run/out/…

D. E. Bernholdt, B. A. Allan, R. Armstrong, et al., "A Component Architecture for High-Performance Scientific Computing,"
International Journal of High Performance Computing Applications, v. 20(2), Summer 2006. doi: 10.1177/1094342006064488



More on coupling

Model1 Model2Msg

Model1 File

Tight Loose

Model2File

Implement via MPI, 
framework, etc.
(e.g., PDEs in a single 
memory space)

Implement via 
workflow system



Swift

• A C-like workflow language for programming the interaction of 
models (in/run/out)
• External processes that communicate via files
• Functions that communicate via variables
• Sequential or parallel

• A runtime that supports portable workflows – deployable on many 
resources (clusters, HPC, clouds)

• Provides natural concurrency at runtime through automatic data flow 
analysis and task scheduling

• Data structures and script operations to support scientific computing
• Provenance gathered automatically
• http://swift-lang.org/



Swift enables execution of simulation campaigns 
across multiple HPC and cloud resources

Local datamarkApps

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus	systems

Cloud	resources

Petascale	systems

National	infrastructure



Swift model

• Variables are single assignment futures
• Variables that be “used” before they are filled/closed
• Unassigned variables are empty/open

• Variables can represent files
• When a file doesn’t exist, the variable is open
• When a file exists, the variable is closed

• All initial tasks found at runtime
• Additional tasks can be created during run

• Tasks with satisfied dependencies (closed variables) are 
run on whatever resources are available

• These create files/variables that allow more tasks to run



Swift concurrency and complexity
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Parsl
• Python-based implementation of the Swift concept

• A fully parallel scripting library 
• Tasks can be models (in/run/out) or (python) functions 

that communicate via files or data objects
• Easy to run: on clusters, clouds and grids
• Sends work to disparate resource providers

• Fast: launches thousands of tasks per second
• Under active development
• http://parsl-project.org



Simple Parsl example
# Import Parsl
import parsl
from parsl import *

# Create a pool of threads to execute functions
workers = ThreadPoolExecutor(max_workers=4)
# Pass workers to the DataFlowKernel, which will execute Apps over them
dfk = DataFlowKernel(workers)

@App('python', dfk)
def pi(total):

# function that creates total random points in 1x1 box and returns the 
number that fall in a circle inside that box

return (number)

@App('python', dfk)
def avg_three(a,b,c):

return (a+b+c)/3



Simple Parsl example, cont.
a, b, c = pi(10**6), pi(10**6), pi(10**6)
# returns immediately, with a, b, c futures

avg_pi = avg_three(a, b, c)
# returns immediately, with avg_pi future
# once a, b, c are calculated, this will start running

# Print the results
print("A: {0:.5f} B: {1:.5f} C: {2:.5f}".format(a.result(), b.result()
, c.result()))
# blocks until a, b, c are calculated

print("Average: {0:.5f}".format(avg_pi.result()))
# blocks until avg_pi is calculated
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