

University of Nottingham

> Data-Hungry Models: Deep Learning of Phenotypes in Crop Plants

Dr. Michael Pound University of Nottingham

Introduction

- Deep learning for fast and accurate recovery of plant traits
 - Traits drive downstream tasks
- Case studies from my work and our lab:
 - Classification
 - Segmentation
 - Localisation
- Recent work in techniques for more challenging images
- Some thoughts about where we go from here over the next few years

About Us

- We use image-analysis, machine learning and deep learning to drive research in Bioscience
- We focus on the development of new techniques and deep network architectures
- My research often focuses on segmentation and object localisation

Capturing Plant Traits - An Example Problem

RootNav

- In 2014 we released RootNav
- Aims to quickly quantify 2D root images in a variety of growth conditions
- Accuracy is a primary focus

 High-throughput root traits can inform modelling approaches, as well as drive genomic studies such as GWAS and QTL

An Example Problem - RootNav

- RootNav is semi-automatic
- Usually users must identify root tips themselves

Representation Learning

- Deep learning has the potential to automate many of these detection processes
- Convolutional networks use convolution and pooling layers learn a feature representation
- A final neural network makes a decision based on these features

Shoot and Root Features

Classification of shoot and root features

Shoot and Root Features

Accuracy of the classifier is very high, with all classes >95%

Feature	Correctly Classified	Misclassified	Accuracy (%)
Root Tip	2904	73	97.5
Root Negative	5687	65	98.9
Total/Average	8591	138	98.4

Feature	Correctly Classified	Misclassified	Accuracy (%)
Leaf Tip	2225	113	95.2
Leaf Base	2299	52	97.8
Ear Tip	686	15	97.9
Ear Base	765	23	97.1
Shoot Negative	6110	136	97.8
Total/Average	12085	339	97.3

Localisation

- Use a sliding window approach
- We identified 12 of 14 root QTLs previously identified manually
- Useful features but noisy

Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 2017

2D output - > segmentation, regression

- A sliding window does not enforce consistency between neighbouring pixels or regions
- Encoder-decoder networks are designed to return 2D output

2D Segmentation

RootNav 2

 Automatic segmentation of roots, and localisation of tips and seed locations

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience 2019

Transfer Learning

- Transfer learning to refine a network to new image types
- Our original dataset was 3000 images, this one is 200 images

Multi-task Learning

 Heatmap regression to predict both the locations of spikes (spike tips) and the individual spikelets

Multi-task classification of awned phenotypes

Multi-task Learning

Spike counting: 95%

Spikelet counting: 99%

Awn identification: 99%

Deep Learning for Multi-task Plant Phenotyping. ICCVW 2017

mpnd.uk/iccv17

Other Applications

 On large images the approach can easily be run on smaller tiles

Harder Images

 Many standard techniques are based on common image datasets, more challenging data can pose a problem

- Common to split an image into smaller tiles, and process these sequentially
- This often loses context

- We save memory by splitting an image into small manageable tiles
- We restore context by sharing information between tiles

36% Memory

27% Memory

Standard network vs a tiled approach

	Accuracy		VRAM (GB)	
DeepLab V3+	Val (%)	Test (%)	Train	Test
Standard	76.2	75.6	1.94 (1.0)	1.18 (1.0)
XT(ours)	75.0	74.1	0.70 (0.361)	1.00 (0.847)
Tiled(ours)	74.7	72.7	0.69 (0.356)	0.95 (0.805)

Tile size performance

Tile Size	Dice (%)	Resolution	Train VRAM (GB)
No tiling	81.6	1024×1024	8.43
$512 \times 512 \text{ XT}$	81.6	1024×1024	3.31
$256 \times 256 \text{ XT}$	79.8	1024×1024	2.52
$128 \times 128 \text{ XT}$	78.0	1024×1024	2.32
$512 \times 512 \text{ XT}$	80.5	2048×2048	7.70
$256 \times 256 \text{ XT}$	78.6	2048×2048	6.41
$512 \times 512 \mathrm{XT}$	-	3072×3072	-
$256 \times 256 \text{ XT}$	78.0	3072×3072	11.9

Higher Dimensions – Xray µCT

Ground Truth

Fine Detail

Larger Receptive Field

Xray µCT

- The network jointly learns two input resolutions
- In essence this is another multi-task learning approach

Low Resolution Branch

Three dimensional root CT segmentation using multi-resolution encoder-decoder networks. IEEE Transactions on Image Processing 2020

Xray µCT

- Multi-resolution benefits from both views
- Hard negative mining further increases performance

Current Challenges

- Modern computer vision and deep learning is not without its problems – particularly in challenging areas like Bioimaging
- Annotation is time consuming
- Bioimages are often much larger (spatial / dimensions) than CNNs are designed for
- Hardware cost is still a barrier for entry at least for training
- The problem of generality

Data Annotation

- Many tools exist for fast data annotation but they tend to be quite general and slower for specific tasks
 - Unsupervised learning avoids annotation
 - Active learning reduces annotation time
 - Gaze-based solutions for easier annotation
 - Synthetic data for training

Data Annotation

- Many tools exist for fast data annotation but they tend to be quite general and slower for specific tasks
 - Unsupervised learning avoids annotation
 - Active learning reduces annotation time
 - Gaze-based solutions for easier annotation
 - Synthetic data for training

Data Annotation

- Many tools exist for fast data annotation but they tend to be quite general and slower for specific tasks
 - Unsupervised learning avoids annotation
 - Active learning reduces annotation time
 - Gaze-based solutions for easier annotation
 - Synthetic data for training

Data Annotation

- Many tools exist for fast data annotation but they tend to be quite general and slower for specific tasks
 - Unsupervised learning avoids annotation
 - Active learning reduces annotation time
 - Gaze-based solutions for easier annotation
 - Synthetic data for training

Giuffrida et al., ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Networks. ICCVW 2017

Training on Challenging Data

- Bioscience has an abundance of hard data problems
- Larger images require more computational resources, and become a barrier for entry and reproducibility
- Problem areas are volumetric and multi/hyperspectral

- Techniques exist to make trained networks efficient during inference
- Efficient training has seen very little work most are case specific

Data and Model Sharing - Generalisability

- Deep learning still has a problem of generalisation
 - Models trained on one dataset will likely lose accuracy on another
 - Lab to field often requires retraining
- Large and varied datasets are important
 - Datasets such as the Global Wheat Challenge comprise varied images from around the world
- Providing access to trained models and code is a key part of this research

Conclusions

- Al is transforming the speed and accuracy of our plant phenotyping efforts
- Deep networks are powerful, but often the best performance comes from new architectures and techniques
- There now must be a renewed focus on collection and annotation of data, and model sharing

michael.pound@nottingham.ac.uk

Acknowledgements **Tony Pridmore** Andrew French Reza Soltaninejad Eze Benson Robail Yasrab Aaron Jackson Darren Wells Jonathan Atkinson Michael Wilson

University of Nottingham

Many thanks!