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▪ Deep learning for fast and accurate 
recovery of plant traits

▪ Traits drive downstream tasks

▪ Case studies from my work and our lab:

▪ Classification

▪ Segmentation

▪ Localisation

▪ Recent work in techniques for more 
challenging images

▪ Some thoughts about where we go from 
here over the next few years

Introduction

mpnd.uk/cis21



▪ We use image-analysis, machine 
learning and deep learning to drive 
research in Bioscience

▪ We focus on the development of 
new techniques and deep network 
architectures

▪ My research often focuses on 
segmentation and object 
localisation

About Us

About Us

mpnd.uk/cvl



▪ In 2014 we released RootNav

▪ Aims to quickly quantify 2D root images 
in a variety of growth conditions

▪ Accuracy is a primary focus

▪ High-throughput root traits can inform 
modelling approaches, as well as drive 
genomic studies such as GWAS and QTL

Capturing Plant Traits - An Example Problem

RootNav



▪ RootNav is semi-automatic

▪ Usually users must identify root tips themselves

An Example Problem - RootNav



▪ Deep learning has the potential to automate many of these 
detection processes

▪ Convolutional networks use convolution and pooling layers learn a 
feature representation

▪ A final neural network makes a decision based on these features

Representation Learning



▪ Classification of shoot and root features

Shoot and Root Features



▪ Accuracy of the classifier is very high, with all classes >95%

Shoot and Root Features

Feature Correctly Classified Misclassified Accuracy (%)

Root Tip 2904 73 97.5

Root Negative 5687 65 98.9

Total/Average 8591 138 98.4

Feature Correctly Classified Misclassified Accuracy (%)

Leaf Tip 2225 113 95.2

Leaf Base 2299 52 97.8

Ear Tip 686 15 97.9

Ear Base 765 23 97.1

Shoot Negative 6110 136 97.8

Total/Average 12085 339 97.3



▪ Use a sliding window approach

▪ We identified 12 of 14 root 
QTLs previously identified 
manually

▪ Useful features – but noisy

Localisation

Deep machine learning provides state-of-the-art performance in image-based plant 

phenotyping. Gigascience 2017
mpnd.uk/giga



▪ A sliding window does not enforce consistency between 
neighbouring pixels or regions

▪ Encoder-decoder networks are designed to return 2D output

2D output - > segmentation, regression



Input                                Output

▪ Automatic segmentation of 
roots, and localisation of 
tips and seed locations

2D Segmentation

RootNav 2

RootNav 2.0: Deep learning for automatic navigation of complex 

plant root architectures. GigaScience 2019
mpnd.uk/rn2



▪ Transfer learning to refine a network to new image types

▪ Our original dataset was 3000 images, this one is 200 images

Transfer Learning



▪ Heatmap regression to predict both the locations of spikes (spike 
tips) and the individual spikelets

▪ Multi-task classification of awned phenotypes

Multi-task Learning



Multi-task Learning

Spike counting: 95% Spikelet counting: 99% Awn identification: 99%

Deep Learning for Multi-task Plant Phenotyping. ICCVW 2017 mpnd.uk/iccv17



▪ On large images the approach can easily 
be run on smaller tiles

Other Applications



▪ Many standard techniques are based on common image datasets, 
more challenging data can pose a problem

Harder Images

20x 10000x



▪ Common to split an image into 
smaller tiles, and process these 
sequentially

▪ This often loses context

High-resolution Segmentation



▪ We save memory by splitting an image into small manageable tiles 

▪ We restore context by sharing information between tiles

High-resolution Segmentation

Context Sharing Layers
▪ These Crosstalk (XT) layers contain 

global filters and attention mechanisms



High-resolution Segmentation

LAT 4K

Cityscapes 0.5Mpx

Source Results Groundtruth

36% Memory

27% Memory



Standard network vs a tiled approach

Tile size performance

High-resolution Segmentation



Higher Dimensions – Xray μCT



Xray μCT

Ground Truth Fine Detail Larger Receptive Field

163 1283



▪ The network jointly learns 
two input resolutions

▪ In essence this is another 
multi-task learning
approach

Xray μCT

Three dimensional root CT segmentation using multi-resolution encoder-decoder 

networks. IEEE Transactions on Image Processing 2020
mpnd.uk/xray

Low Resolution Branch

High Resolution Branch

Combined Output



▪ Multi-resolution benefits from 
both views

▪ Hard negative mining further
increases performance

Xray μCT

Ground Truth Multi-resolutionHard Negative Mining
Fine Detail Larger Receptive Field

163 1283



▪ Modern computer vision and deep learning is not without its 
problems – particularly in challenging areas like Bioimaging

▪ Annotation is time consuming

▪ Bioimages are often much larger (spatial / dimensions) than CNNs 
are designed for

▪ Hardware cost is still a barrier for entry – at least for training

▪ The problem of generality

Looking Forwards

Current Challenges



▪ Many tools exist for fast data annotation but they tend to be quite 
general and slower for specific tasks

Looking Forwards

Data Annotation

Unlabelled 

Data

Labelled 

Data

Trained
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Human 

Annotator

▪ Unsupervised learning 
avoids annotation

▪ Active learning reduces 
annotation time

▪ Gaze-based solutions for 
easier annotation

▪ Synthetic data for training
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▪ Many tools exist for fast data annotation but they tend to be quite 
general and slower for specific tasks

Looking Forwards

Data Annotation

▪ Unsupervised learning 
avoids annotation

▪ Active learning reduces 
annotation time

▪ Gaze-based solutions for 
easier annotation

▪ Synthetic data for training
mpnd.uk/arigan

Giuffrida et al., ARIGAN: Synthetic Arabidopsis Plants using 

Generative Adversarial Networks. ICCVW 2017



▪ Bioscience has an abundance of hard data problems

▪ Larger images require more computational resources, and become 
a barrier for entry and reproducibility

▪ Problem areas are volumetric and multi/hyperspectral

Looking Forwards

Training on Challenging Data

▪ Techniques exist to make trained networks 
efficient during inference

▪ Efficient training has seen very little work –
most are case specific



▪ Deep learning still has a problem of generalisation 

▪ Models trained on one dataset will likely lose accuracy on 
another

▪ Lab to field often requires retraining

▪ Large and varied datasets are important

▪ Datasets such as the Global Wheat Challenge comprise varied 
images from around the world

▪ Providing access to trained models and code is a key part of this 
research

Looking Forwards

Data and Model Sharing - Generalisability



▪ AI is transforming the speed and accuracy 
of our plant phenotyping efforts

▪ Deep networks are powerful, but often the 
best performance comes from new 
architectures and techniques

▪ There now must be a renewed focus on 
collection and annotation of data, and 
model sharing
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